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A B S T R A C T :   

With the increasing demand for orthopedic and dental reconstruction surgeries, there comes a shortage of viable 
bone substitutes. This study was therefore designed to assess the efficacy of porous fluorohydroxyapatite (FHA) 
as a potential bone substitute. For this, porous FHA scaffolds were fabricated using the freeze casting technique. 
They were then sintered at 1250, 1350 and, 1450 ◦C, and microstructural, mechanical, and in vitro properties 
were analyzed. The microstructure analyses revealed the porosity remained constant within the temperature 
range. However, the pore size decreased with increasing sintering temperature. The greatest compressive 
strength and elastic modulus were obtained at 1450 ◦C, which were 13.5 ± 4.0 MPa and 379 ± 182 MPa, 
respectively. These are comparable values to human trabecular bone and other porous scaffolds made using 
hydroxyapatite. This analysis has thus helped to attain an understanding of the mechanical and material 
properties of freeze-cast FHA scaffolds that have not been presented before. In vitro studies revealed an increasing 
rate of human osteoblast cell proliferation on freeze-cast FHA scaffolds with increasing sintering temperature, 
suggesting improved osteogenic properties. Additionally, osteoblasts cells were also shown to proliferate into the 
interior pores of all freeze-cast FHA scaffolds. These results indicate the potential of porous FHA scaffolds 
fabricated using the freeze-casting technique to be utilized clinically as bone substitutes.   

1. Introduction 

Calcium phosphates are used in dental and orthopedic surgeries 
because of their mechanical properties, corrosion resistance, and 
biocompatibility (Ramay and Zhang, 2004; Hench, 1998; Sopyan and 
Gunawan, 2013; Thrivikraman et al., 2017). Among these phosphates, 
hydroxyapatite (HA) is commonly used because of its stochiometric 
similarity to the mineral component in bone and for its osteoconductive 
properties (Dutta et al., 2015). This apatite has been used in multiple 
ways, which include coatings for titanium implants (Dutta et al., 2015; 
Dehghanghadikolaei and Fotovvati, 2019; Diez et al., 2016), bone ce-
ments for fixation (Alge et al., 2009; Rabiee et al., 2010; Kang et al., 
2018), and artificial scaffolds to promote bone growth (Zamanian et al., 
2013; Bienek and Skrtic, 2017; Habraken et al., 2007; Milovac et al., 
2014). The development of artificial bone scaffolds is necessary because 
of allograft and autograft shortages due to limited donor availability, 
prolonged surgery times, and pain (Baldwin et al., 2019; Arrington et al., 
1996; Belthur et al., 2008; Russell and Block, 2000; Tuchman et al., 

2016; Boyce et al., 1999; van de Vijfeijken et al., 2018). However, 
current artificial bone scaffolds often lack the osteoinductive or osteo-
genic properties and mechanical strength required for long-term bone 
remodeling and regeneration (Luo et al., 2018; Nuss and von Rechen-
berg, 2008). As such, there is a need to develop a suitable artificial bone 
scaffold to improve reconstructive surgery. 

Porous bioceramics have been investigated to find an alternative to 
current bone scaffolds (Sopyan and Gunawan, 2013; Munch et al., 2008; 
Deville, 2010). The porosity of these porous bioceramics provides a 
suitable biocompatible environment for cell growth and proliferation 
(Polo-Corrales et al., 2014). A high porosity also facilitates nutrient and 
fluid transport (Polo-Corrales et al., 2014). However, porosity generally 
reduces the mechanical strength and resilience, which is necessary for 
physiological load bearing (Deville, 2010; Fu et al., 2008a). Multiple 
methods have been developed to fabricate porous bioceramics, such as 
polymer replication (Jo et al., 2009; Kim et al., 2009), solid freeform 
fabrication (Kim et al., 2011), rapid prototyping (Deisinger et al., 2008; 
Wilson et al., 2004), and freeze casting (Lee et al., 2007, 2017; Deville 
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et al., 2006a; Fu et al., 2008b). Notable amongst these is freeze casting, 
which is a simple and effective technique that allows for tailored 
porosity, pore structure, and mechanical properties (Nelson et al., 2020; 
Yook et al., 2012). 

The freeze-casting process consists of four steps: (1) a colloidal slurry 
is mixed using solid loading particles, a freezing solvent, polymeric 
binders, and a dispersant; (2) the slurry is directionally frozen to 
segregate the solid particles between the growing ice crystals forming a 
preliminary scaffold; (3) the frozen scaffold is sublimated at low tem-
perature and pressure to remove the ice crystals resulting in a weak 
green body; (4) the green body is sintered to fuse the solid particles 
together while disintegrating the polymeric binders and dispersants 
with the resultant porous structure of the scaffold being a rough negative 
of the sublimated ice crystals (Munch et al., 2008, 2009; Nelson et al., 
2019a, 2020; Deville et al., 2006b, 2007). While water is a commonly 
used solvent, other solvents such as camphene (Lee et al., 2007; Han 
et al., 2010) and tert-butyl alcohol (TBA) (Lee et al., 2019; Tang et al., 
2016) have also been used. Camphene is notable because it maintains a 
solid state in ambient conditions and can produce highly dendritic 
crystal growth during freezing (Lee et al., 2007; Han et al., 2010). 
Alternatively, tert-butyl alcohol produces a variety of crystal structures 
based on the TBA content during freezing, with a hexagonal pore 
structure obtained with pure TBA (Lee et al., 2019). The freeze-casting 
process is based on physical particle interactions with the freezing sol-
vent, so the process can be achieved independently of the material’s 
chemistry (Deville, 2010; Deville et al., 2006a, 2006b). As a result, HA 
structures made through freeze casting have shown promise as 
bone-scaffolds, with mechanical strengths and porosities similar to what 
is seen in trabecular bones (Zamanian et al., 2013; Fu et al., 2008a; 
Deville et al., 2006a). 

HA has been used in multiple biomedical applications as HA-based or 
composite materials such as coatings (Diez et al., 2016; Kim et al., 2004; 
Bai et al., 2019), bone cements (Rabiee et al., 2010; Kang et al., 2018), 
and artificial implants (Sopyan and Gunawan, 2013; Gaviria et al., 
2014). The material has osteoconductive properties and elicits a limited 
immune response (Ghanaati et al., 2010, 2012; Al-Maawi et al., 2017). 
Over the past decade, multiple scaffolds using HA and other calcium 
apatites have been developed (Kattimani et al., 2016). Despite the focus, 
limitations still remain when using the material. When HA is sintered 
above 850 ◦C to increase the mechanical strength, the HA begins to 
decompose into other calcium phosphates, resulting in a weaker struc-
ture and highly resorbable forms, which results in poor biocompatibility 
(Ou et al., 2013; Ghazanfari and Zamanian, 2013). Stoichiometrically 
altering the HA by partially replacing the hydroxyl group with fluorine 
yields fluorohydroxyapatite (FHA), which resolves the previous issues. 
Studies on FHA have shown enhanced biocompatibility when compared 
to HA (Liu et al., 2019; Rojaee et al., 2014). Studies on the effects of 
temperature also show that FHA has higher thermal stability in com-
parison to HA by limiting the decomposition into tricalcium phosphate 
(TCP) (Zhao et al., 2010; Chen et al., 2015). TCP scaffolds show a higher 
resorption rate compared to HA and FHA, but if the quantity is 
controlled, TCP can also be used to tailor the resorption rate (Ghanaati 
et al., 2012; Chu et al., 2013). Improved mechanical properties are also 
expected to come with improved thermal stability. Kim et al. (2004) 
demonstrated increased mechanical properties in zirconia composites 
with HA and FHA, with flexural strength, fracture toughness, and 
hardness improving with increasing fluoride composition. 

To date, multiple studies have examined the use of FHA composites 
in the development of biomedical applications (Kim et al., 2004; Bai 
et al., 2019; Rojaee et al., 2014; Fathi and Mohammadi Zahrani, 2009). 
However, little research has focused on pure porous FHA scaffolds. In 
this study, an understanding of the mechanical and material properties 
of freeze-cast FHA scaffolds was established. Scaffolds were sintered at 
1250 ◦C, 1350 ◦C, and 1450 ◦C to determine the effects of sintering on 
thermal stability and mechanical properties. The scaffolds and their 
resulting properties were evaluated on their similarities to human bone. 

Additionally, an assay using the MTT (tetrazolium salt) kit was con-
ducted to evaluate osteoconduction in vitro. These results demonstrated 
that freeze-cast FHA scaffolds showed potential as biomedical implants. 

2. Materials and methods 

2.1. Apatite synthesis 

Apatite powders were synthesized in-house. FHA was prepared using 
a published methodology, which was described fully in our previous 
paper (Bennett et al., 2019). The fluoridated apatites, FHA, were syn-
thesized by mixing 250 mL of 1.2 M Ca(NO3)2 solution and 250 mL of 
0.72 M Na2HPO4 solution containing appropriate stoichiometric ratios 
of NaF. Both Ca(NO3)2 and Na2HPO4/NaF solutions were dispensed at a 
rate of 2.4 mL/min into a 12 L reaction flask containing 10 L of deionized 
water that was heated to a pre-selected isothermal temperature of 95 ◦C. 
Post-synthesis, slurries were filtered and washed with 20 L of deionized 
water to remove salt by-products. After drying the filtered-slurry in a 
vacuum oven at 70 ◦C for 72 h, apatite powders were characterized 
using inductively coupled plasma mass spectrometry (ICP-MS) to 
determine the phosphate and calcium contents, x-ray diffraction to 
quantify the crystallinities, and fluoride probe to determine the fluoride 
content. These characterization methods were fully described in our 
previous manuscript (Bennett et al., 2019). 

2.2. Freeze-casting process 

To fabricate the freeze-cast FHA scaffolds, aqueous slurries were 
made with 10 vol% FHA powder mixed with 1 wt% polyvinyl alcohol of 
88,000–97,000 g/mol (Alfa Aesar, Ward Hill, MA, USA) and 1 wt% 
polyethylene glycol of 10,000 g/mol (Alfa Aesar, Ward Hill, MA, USA) as 
binders, 1 wt% Dynol 604 (Evonik Industries, Essen, Germany) as a 
dispersant, 5 vol% of 97 % isopropyl alcohol (Sigma-Aldrich, St. Louis, 
MO, USA) to produce a larger pore size (Miller et al., 2018; Naleway 
et al., 2016), and distilled water. Individual slurries of 10 mL were 
sealed in a 40 mL plastic bag and sonicated at 42 kHz for 30 min to 
create a colloid. Sonication has been previously proven effective to 
homogenize freeze-cast slurries (Nelson et al., 2019a, 2019b, 2020; Silva 
et al., 2015; Souza et al., 2014). Immediately following sonication, the 
individual slurries were poured into a 20 mm diameter PVC freeze-cast 
mold and directionally frozen starting at room temperature at a rate of 
− 10 ◦C/min in a custom freeze casting setup as previously described 
(Nelson et al., 2020). Slurries were then freeze-dried at 0.047 mBar and 
− 51 ◦C for 96 h to fully sublimate the ice. Next, the resultant green 
bodies were sintered in air for 3 h at three different temperatures: 
1250 ◦C, 1350 ◦C, and 1450 ◦C with a heating and cooling rate of 
2 ◦C/min Starting and finishing at room temperature. The resultant 
products were 5 porous, freeze-cast FHA scaffolds at each sintering 
temperature measuring 14 mm in diameter and 20 mm in height. 

2.3. Sample preparation 

The freeze-cast FHA scaffolds were cut into smaller sections for 
testing (Fig. 1). The top and bottom sections in the lamellar region were 
prepared for imaging under scanning electron microscopy (SEM; FEI 
Quanta 600 FG, Hillsboro, OR, USA) with a 4 nm spot size and 20 kV 
accelerating voltage. The imaged surfaces were taken 4 mm from the top 
to avoid surface effects and 6 mm from the bottom to avoid the dense 
region that is caused by the initial rapid ice growth during freeze casting 
(Nelson et al., 2019b) (Fig. 1a). The remaining middle section was 
bisected into two discs with each being 5 mm thick (Fig. 1a). 
Compression samples 5 mm in height and 6 mm in radius were prepared 
for mechanical testing by cutting one of the discs into quarter circles 
(Fig. 1b). Note the smaller radius compared to the diameter of the disc 
was because of the removal of material when preparing the compression 
samples. For cell culture experiments, scaffolds (Fig. 1c) were cleaned by 
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washing with 70 % ethanol for 2 h and sterilized using an autoclave. At 
each sintering temperature, the freeze-cast FHA scaffolds were prepared 
into 5 top imaged surfaces, 5 bottom imaged surfaces, 20 compression 
samples, and 5 cell culture samples. As described previously (Bennett 
et al., 2019), solid FHA discs were also prepared and sintered at 1250 ◦C 
to be used as cell culture controls. These discs were 11 mm in diameter 
and 3 mm in height and were chosen as they have been used as controls 
in our previous research (Bennett et al., 2019). 

2.4. Material characterization 

To determine the crystallographic changes from the sintering pro-
cess, powder X-ray diffraction (XRD) of FHA samples before and after 
sintering was performed using a Miniflex 600 diffractometer (Rigaku 
Corporation, Tokyo, Japan). The sintered powders were prepared from 
crushed freeze-cast FHA scaffolds. Scans were run over a range of 10–70 
◦2θ at a rate of 0.5 ◦2θ min− 1 with a step size of 0.05 ◦2θ. This resulted in 
four scans performed before sintering and four scans each performed 
after sintering at 1250 ◦C, 1350 ◦C, and 1450 ◦C, which resulted in a 
total of 16 scans. 

2.5. Microstructural characterization 

The microstructure of the freeze-cast FHA scaffolds in the x-y-plane 
(Fig. 1) was imaged using SEM (FEI Quanta 600 FG, Hillsboro, OR, USA). 
For this, SEM samples were coated with a 15 nm layer of gold-palladium 
prior to imaging. Five images of each SEM sample were taken in 
different areas of the scaffold. Forty images of scaffolds in the x-y-plane 
at each sintering temperature were analyzed using Image-J and the 
DiameterJ plugin (Hotaling et al., 2015) to determine the porosity, 
equivalent pore diameter, wall thickness, and wall porosity. The 
porosity was measured as the percent area that was occupied by pores 
versus the FHA walls (N = 40). Equivalent pore diameter was evaluated 
from N = 1200 samples using the ratio of perimeter to the area as used 
for equivalent diameters for elliptical ducts (Eq. (1)). Wall thickness was 
measured from N = 1200 samples as the average width of the FHA walls 
along their lengths. Wall porosity was measured as the percent area that 
was occupied by pores within the FHA walls versus the total area of the 
FHA walls (N = 40). 

de = 1.55A0.625/P0.25 (Eq 1)  

where de is the equivalent diameter, A is the area of the pore, and p is the 
perimeter of the pore. In addition, the raw FHA powder was imaged 
using SEM after synthesis with the length and width of the powder 
measured with N = 40 samples each. 

2.6. Mechanical testing 

To determine the mechanical properties of the freeze-cast FHA 
scaffolds as a function of the sintering temperature, compression testing 
was performed using an Instron Model 5967 (Instron, Norwood, MA, 
USA) load frame with a 30 kN load cell. Compression test samples (n =
19/each sintering temperature) were compressed at a constant cross-
head speed of 1 mm/min in the z-direction. The ultimate compressive 
strength and modulus of elasticity were calculated from the maximum 
stress and initial linear slope of the stress-strain curves, respectively. 

2.7. In vitro cell culturing 

Human osteoblast (hOB) cells were obtained from American Type 
Culture Collection (ATCC, Manassas, VA, USA). The cells were cultured 
in a complete medium of Dulbecco’s Modified Eagle Medium (DMEM) 
supplemented with 10 % fetal bovine serum and 0.3 mg/mL Geneticin- 
418 for four days. The cell culture samples and controls were autoclaved 
at 250 ◦C for 20 min prior to seeding with 60,000 hOB cells in 200 μL of 
complete medium. Seeded cell culture samples and controls were incu-
bated for a 2-h period to allow cell attachment. After the cell attachment 
period, the cell culture samples and controls were transferred to a 12- 
well plate and submerged in 2 mL of complete medium. Cells were 
incubated on the samples and controls for seven days. All cell culturing 
was maintained at 34 ◦C with 5 % CO2, and the medium was changed 
every 2 days throughout the incubation period. 

2.8. Cell viability through MTT assay 

An MTT assay was performed using the Abcam MTT (tetrazolium 
salt) assay kit (ab211091, Burlingame, CA, USA). After a seven-day 

Fig. 1. An illustrated cut of a freeze-cast scaffold in the (a) x-z-plane, (b) the compression samples in the x-y-plane, (c) the cell culture sample in the x-y-plane. The 
lower and upper imaged surfaces were taken ≈6 mm from the bottom and ≈4 mm from the top, respectively. The cell culturing and compression samples were taken 
from the middle 10 mm of the scaffold. All samples and surfaces analyzed were in the lamellar section away from the initial dense section of the FHA freeze-cast 
scaffold. The ice growth direction is indicated along the length of the scaffold in (a). In (b) and (c), the ice growth direction is perpendicular to the page. 
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incubation period, cell culture samples and cell culture controls were 
placed in 400 μL of medium consisting of a 1:1 ratio of serum-free DMEM 
and the MTT reagent and incubated for 3 h. After the incubation, the cell 
culture samples and controls were rinsed in 1x phosphate-buffered so-
lution (PBS) and blotted dry before pictures were taken to visually 
observe the presence of insoluble purple formazan that occurs as a 
product of viable cells through mitochondrial reduction of MTT. The cell 
culture samples and controls were cut along the x-y plane using a razor 
blade to examine the presence of formazan within the interior of the 
scaffold. After imaging, the formazan was dissolved with 1.5 mL of MTT 
solvent from the assay kit. The resulting optical density was measured 
using a spectrophotometer (SpectraMax M3, Molecular Devices, San 
Jose, CA, USA) at 590 nm in accordance with the Abcam MTT assay 
protocol (MTT assay protocol | Abcam). Optical density readings were 
performed in triplicate with 5 wells containing the formazan and solvent 
for each scaffold in a 96-well plate for a total of 45 measurements per 
sintering temperature. 

2.9. Statistical analysis 

Analyses of variance (ANOVAs) were performed on the mechanical 
properties, wall thickness, wall porosity, and formazan optical density of 
the scaffolds between sintering temperatures using a significance of α =
0.05. The pore size variance was determined through Levene’s test of 
equal variance (α = 0.05), and because of unequal variance, a Kruskal- 
Wallis test, the non-parametric equivalent to ANOVA, was performed (α 
= 0.05). Following a result of a significant difference, a pair-wise 
comparison using Tukey’s honest significant difference (HSD) was per-
formed to determine which groups differed from one another, using a 
significance level of α = 0.05. 

3. Results and discussion 

3.1. Chemical composition 

Fig. 2 shows XRD data for FHA in an unsintered state and sintered at 
1250 ◦C, 1350 ◦C, and 1450 ◦C along with the HA reference pattern. The 
peak shifts observed compared to the HA reference pattern reflect the 
change in lattice parameters of the apatite structures resulting from 
fluoride incorporation (Joseph Nathanael et al., 2013). FHA sintered at 
1250 ◦C and 1350 ◦C showed a narrowing of peaks compared to the 
as-made FHA, indicating an increase in crystallinity with sintering 
temperature up to temperatures of 1350 ◦C (Chen and Miao, 2005). 

Sintered ceramics have also been demonstrated to narrow the peak 
widths from the as-made powder, which has been attributed to poor 
crystallinity, nanocrystalline size, or a change in density (Fu et al., 
2008b; Chen and Miao, 2005; Lebrun et al., 2016). A combination of 
peak broadening or amorphous humps appeared more prevalent for FHA 
sintered at 1450 ◦C, indicating a phase-change event. Peak broadening 
was attributed to small crystallite size, while amorphous structures 
might have been present due to phase decomposition into β-tricalcium 
phosphate (β-TCP) (Elghazel et al., 2017) (ICDD- 01-086-1585). The 
presence of β-TCP in FHA, when sintered above 1400 ◦C, has been 
previously observed (Chen and Miao, 2005; Elghazel et al., 2017; Taktak 
et al., 2018). These authors postulated that either a) an increase in the 
decomposition of apatite to β-TCP at high temperatures or b) a deriva-
tive formed as the result of high-temperature sintering of α-tricalcium 
phosphate (α-TCP) was the mechanism (Chen and Miao, 2005; Elghazel 
et al., 2017; Taktak et al., 2018). Composites of β-TCP and FHA have 
been studied and found to be favorable for bone growth, with the 
incorporation of FHA reducing the dissolution rate (Elghazel et al., 
2017; Taktak et al., 2018). 

While HA decomposition into tetracalcium phosphate (TTCP) above 
1100 ◦C (Ou et al., 2013; Chen and Miao, 2005) and α-TCP above 
1200 ◦C (Chen and Miao, 2005) is common, neither material was 
detected via XRD in sintered FHA. Both α-TCP and TTCP are associated 
with reduced strength and increased resorption in HA-based scaffolds 
(Ou et al., 2013; Chen and Miao, 2005), so no detectable presence in the 
sintered FHA indicated better chemical stability than is seen in HA. The 
observed peak broadening and phase decomposition also appeared to 
lead to the realignment of grain boundaries at higher sintering tem-
peratures, which led to increased densification and strength when sin-
tered (Chen et al., 2015; Chen and Miao, 2005). Overall, the XRD 
analysis corroborated the increased thermal and chemical stability 
provided through the partial fluoridation of hydroxyapatite into FHA 
and demonstrated that these advantages were maintained when the FHA 
was processed into freeze-cast FHA scaffolds. 

3.2. Microstructure (SEM) 

The unsintered FHA powder had a needle-like shape with a length 
much greater than the width (Fig. 3). The length and width of the 
powder were 990 nm ± 610 nm and 134 nm ± 47 nm, respectively. 
While the unique shape of the powder would alter the freezing dynamics 
established by Deville (2013), the use of long-chain additives PEG and 
PVA were employed to ensure stable scaffolds could be fabricated. 

Fig. 2. XRD spectra of fluorohydroxyapatite sintered at different temperatures. (a) as-made FHA powder, (b) FHA sintered at 1250 ◦C, (c) FHA sintered at 1350 ◦C, 
(d) FHA sintered at 1450 ◦C, (e) HA reference pattern. * indicate β-TCP (ICDD- 01-086-1585). 
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The observed microstructures of the freeze-cast FHA scaffolds in the 
x-y plane are shown in Fig. 4. To ensure blood perfusion into the scaffold 
structure for ideal bone regeneration, an open porosity is necessary for 
the transportation of nutrients, oxygen, and growth factors for the cells 
(Polo-Corrales et al., 2014). The open-pore microstructure of the 
freeze-cast FHA scaffolds matched previous studies on freeze casting 
with HA (Zamanian et al., 2013; Deville et al., 2006a; Fu et al., 2008b), 
with lamellar pores and walls appearing throughout the scaffolds. The 
porosity and wall thickness are listed in Table 1. The porosity was 
similar for the scaffolds at all three sintering temperatures (41.9 % ± 4.3 
% at 1250 ◦C, 39.4 % ± 7.3 % at 1350 ◦C, 42.1 % ± 5.5 % at 1450 ◦C) 
with no statistically significant differences between sintering tempera-
tures (p = .072). 

Fig. 5 shows the mean ± standard deviation equivalent pore diam-
eter at all three sintering temperatures as well as the probability density 
of the pores. Larger pores were found in 1250 ◦C scaffolds (with the 
mean equivalent pore diameter = 23.9 μm ± 14 μm) versus the 1350 ◦C 

and 1450 ◦C scaffolds, which had similarly sized pore sizes (mean 
equivalent pore diameters of 18.5 μm ± 8.0 μm and 17.9 μm ± 7.6 μm, 
respectively). There were statistically significant differences in pore size 
when comparing the 1250 ◦C to 1350 ◦C (p = .017) and to 1450 ◦C (p =
.003), though no statistically significant differences were found when 
comparing 1350 ◦C to 1450 ◦C (p = .137). The small pore size in all 
freeze-cast FHA scaffolds was attributed to a relatively fast cooling rate 
(10 ◦C/min) (Deville et al., 2006a), with a slower cooling rate producing 
larger pores. The measured equivalent diameter was comparable to pore 
sizes measured in previously reported freeze-cast HA scaffolds (Deville, 
2010; Deville et al., 2006a; Fu et al., 2008c). Ideal pore sizes are re-
ported to be at least 100 μm for bone growth (Iviglia et al., 2019; Abbasi 
et al., 2020), but studies using HA scaffolds have documented bone 
growth when using pore sizes below 50 μm both in vivo (Fisher et al., 
2002; Roy et al., 2003) and in vitro (Tsuruga et al., 1997; Akay et al., 
2004). Coupled with the high interconnectivity and open porosity, the 
scaffolds fabricated in this study are a promising alternative to bone 
substitutes. 

Wall thickness (Table 1) did not display statistically significant dif-
ferences between sintering temperatures (p = .450), with the wall 
thickness averaging 9 to 10 μm at all sintering temperatures. The walls 
of the fabricated scaffolds fell within the previously measured lamellar 
thickness in the cortical bone at 9.0 μm ± 2.13 μm (Pazzaglia et al., 
2012). When examining the walls of the scaffolds at higher magnifica-
tion (Fig. 4d–f), micro-pores were found in the walls. These wall pores 
have also been found in previously reported freeze-cast HA scaffolds as 
well (Deville et al., 2006a). Fewer wall pores were observed at higher 

Fig. 3. SEM image of as-made FHA powder. The scale bar is 1 μm.  

Fig. 4. SEM imaged surfaces used for measuring porosity, pore size, and wall thickness of the x-y-cross sections for: (a, d) 1250 ◦C, (b, e) 1350 ◦C, and (c, f) 1450 ◦C 
scaffolds used to measure the porosity and pore size. a–c: images taken at a lower magnification. The scale bars are 150 μm. d–f: images taken at a higher 
magnification shower the differences in wall structure and porosity. The scale bars are 15 μm. 

Table 1 
Microstructural properties. Data is displayed as the mean ± the standard devi-
ation of N = 30 measurements.  

Sintering temperature [◦C] Porosity [%] Wall thickness [μm] 

1250 41.9 ± 4.3 10.6 ± 1.0 
1350 39.4 ± 7.3 10.8 ± 1.5 
1450 42.1 ± 5.5 9.8 ± 1.5  
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sintering temperatures leading to the conclusion that the material was 
not fully sintered at 1250 ◦C. These micropores have been reported as 
beneficial for cell attachment from the increased surface area (Bignon 
et al., 2003). The differences in wall porosity were found to be statisti-
cally significant (Fig. 6 when comparing 1250 ◦C to 1350 ◦C (p = 3.61 ×
10− 7) and to 1450 ◦C (p = 7.81 × 10− 4). There were no statistically 
significant differences in wall porosity between 1350 ◦C and 1450 ◦C (p 
= .149). Grain size and surface roughness did not change with sintering 
temperatures, and therefore, it would unlikely affect the mechanical 
behavior and cellular response. A similar observation has been reported 
by Eslami et al. (2009), where they saw little to no change in grain sizes. 

3.3. Mechanical behavior 

Fig. 7 shows the mechanical response of the freeze-cast FHA scaffolds 
to compression in the z-direction, represented as the mean ± the stan-
dard deviation. With increasing sintering temperature, both the 
compressive strength and elastic modulus increased with the highest 
values at 1450 ◦C (13.5 MPa ± 4.0 MPa and 379 MPa ± 182 MPa, 
respectively). When comparing the compressive strength between sin-
tering temperatures, statistically significant differences were found be-
tween all groups (p ≤ .032). When comparing the elastic moduli 
between sintering temperatures, statistically significant differences were 
found between 1250 ◦C and 1450 ◦C (p = 1.31 × 10− 6) and 1350 ◦C and 
1450 ◦C (p = 1.21 × 10− 4). No statistically significant differences were 

found between 1250 ◦C and 1350 ◦C (p = .078). The standard deviations 
for the elastic modulus (±76 MPa, ± 106 MPa, ± 182 MPa, at 1250 ◦C, 
1350 ◦C, 1450 ◦C, respectively) increased with increasing sintering 
temperatures, indicating a larger spread of values, likely due to the 
variability in the microstructural lamellar walls. The increase in me-
chanical properties is indicative of the densification of the microstruc-
ture, where the wall porosity decreased with sintering temperature, and 
the scaffolds became fully sintered. The mechanical properties of HA- 
based freeze cast scaffolds were reported to plateau in compressive 
strength at sintering temperatures around 1325◦C–1375 ◦C (Fu et al., 
2008a; Deville et al., 2006a). For the freeze cast FHA scaffolds, full 
sintering occurred at 1450 ◦C as demonstrated by the mechanical 
properties and nonporous scaffold walls. Also, observed large increases 
in mechanical properties at high sintering temperatures had been 
attributed to the nonporous FHA samples (Qu and Wei, 2006). These 
results corroborated the observations of Chen and Miao (2005) (Chen 
and Miao, 2005) wherein FHA reached full sintering near 1450 ◦C. Chen 
and Miao postulated that the addition of fluorine slowed the densifica-
tion rate, which would naturally lead to a higher sintering temperature 
requirement. The large gap in compressive strengths, as seen in Fig. 7, 
between 1350 ◦C and 1450 ◦C can similarly be reasoned as a difference 
between partial and full sintering. 

When compared to HA scaffolds made through freeze casting and 
other techniques such as polymer replication, the freeze-cast FHA scaf-
folds showed comparable results. HA scaffolds made from polymer 
replication were reported to have a compressive strength of 1.3 MPa 
(Tripathi and Basu, 2012). Freeze-cast HA scaffolds were reported with 
compressive strengths ranging from 2 to 60 MPa and moduli ranging 
from 100 to 200 MPa depending on controllable parameters like solid 
loading, cooling rate, and porosity (Zamanian et al., 2013; Fu et al., 
2008a; Kim et al., 2011; Deville et al., 2006a). When compared to the 
target application of human trabecular bone where compressive 
strength is 2–12 MPa, and the elastic modulus is 0.1–5 GPa (Fung and 
Fung, 1993), changing the sintering temperature in the current 
freeze-cast FHA scaffolds allowed for varying mechanical properties all 
within the limits of the mechanical properties of human trabecular bone. 
Freeze-cast FHA scaffolds sintered at 1250 ◦C were in line with the lower 
range of human trabecular bone, the 1350 ◦C scaffolds were in the 
middle of the range of human trabecular bone, and the 1450 ◦C scaffolds 
were in the upper range of human trabecular bone compressive strength, 
with the freeze-cast FHA scaffolds having compressive strengths of 4.17 
MPa ± 0.80 MPa, 5.75 MPa ± 2.9 MPa, and 13.5 MPa ± 4.0 MPa, 
respectively. Therefore, similar to freeze-cast HA scaffolds, which 
demonstrate versatility in tailored mechanical properties, freeze-cast 
FHA scaffolds also provided the potential for tailored properties by 

Fig. 5. Probability density distributions of N = 1200 measurements of pore size by using equivalent diameter and distinguished by sintering temperature. The 
histogram shows the actual probability density of pore size at 1450 ◦C. Means ± standard deviations of the distributions are shown through symbols and horizontal 
error bars: green square for 1250 ◦C, red diamond for 1350 ◦C, and blue circle for 1450 ◦C. 

Fig. 6. Wall porosity as a function of sintering temperature. Data is displayed 
as the mean ± standard deviation of N = 40 measurements. Statistical signifi-
cance (p < .05) between groups is noted by p-values above brackets corre-
sponding to pairwise comparisons. 
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adjusting the parameters in the freeze-casting process, as demonstrated 
by these current results on the relationship between the mechanical 
properties and sintering temperature. 

3.4. MTT assay 

All scaffolds remained intact during the cell culturing assay, and 
freeze-cast FHA scaffolds seeded with hOB cells and treated with MTT at 
the end of incubation are shown in Fig. 8. The purple pigment visible on 
the scaffold was the result of mitochondrial reduction of MTT to an 
insoluble formazan product and signified viable cells (Fu et al., 2009a). 
An increase in color intensity indicated greater cell proliferation of 
viable cells. More formazan was produced at the top surfaces where cells 
were initially seeded compared to the bottom surfaces. However, 

formazan produced on the bottom surface and along the interior of the 
scaffolds indicated the porous nature of the freeze-cast FHA scaffolds 
allowed for cell proliferation throughout the scaffold. This was high-
lighted when comparing the porous freeze-cast FHA scaffolds to a fully 
sintered FHA scaffold, where no formazan was observed on the bottom 
surface or through the interior (Fig. 8). The proliferation of cells in 
freeze-cast FHA scaffolds is consistent with previous studies using MTT 
assays on freeze-cast HA scaffolds (Fu et al., 2009a, 2009b). The pene-
tration of formazan through the entire scaffold indicates an open 
porosity and interconnectivity, which is also ideal for bone regeneration 
as it allows for bone ingrowth and remodeling through the scaffold. 

Quantitative results from the MTT assay are represented in Fig. 9 as 
the mean and standard deviation of the measured optical density. The 
cell viability showed an increase with increasing sintering temperature 

Fig. 7. Compressive strength (a) and elastic modulus (b) as a function of sintering temperature of FHA freeze-cast scaffolds. Data is displayed as the mean ± standard 
deviation of N = 19 measurements. Statistical significance (p < .05) between groups is noted by p-values above brackets corresponding to pairwise comparisons. 

Fig. 8. Freeze-cast FHA scaffold discs sintered at varying temperatures seeded with hOB cells treated with MTT: (a) seeded surfaces in the x-y plane; (b) x-z plane 
cross-sections of discs showing infiltration of MTT-marked viable cells into the microstructure; (c) bottom surfaces of disks with a labeling marker to distinguish 
between the bottom and top surfaces. The scale bars are 5 mm. 
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when comparing between the freeze-cast FHA scaffolds. No statistically 
significant differences were found when comparing 1250 ◦C to 1350 ◦C 
(p = .362) for cell viability. Statistically significant differences were 
found when comparing 1250 ◦C and 1350 ◦C to 1450 ◦C (p < 3.77 ×
10− 9), with the difference attributed to the fully sintered nature of the 
1450 ◦C scaffolds. The 1450 ◦C sintered scaffolds had changed chemical 
composition as determined from the XRD (Fig. 2) and this fully sintered 
nature allowed for a reduction in loose FHA particulate due to the fully 
sintered walls as observed through SEM (Fig. 4) and in the cell culture 
media. When compared to a non-porous FHA scaffold sintered at 
1250 ◦C, the cellular response was improved for all freeze-cast FHA 
scaffolds with statistical significance (p < 3.77 × 10− 9). Due to the large 
surface area of the freeze-cast FHA scaffolds, cells could attain better 
attachment and nutrient absorption in comparison to the non-porous 
FHA control. 

To the knowledge of the authors, this was the first time that FHA has 
been used to create freeze-cast scaffolds. The porosity produced by the 
scaffolds allowed for cell adhesion and proliferation for up to 1 week in 
vitro. When compared to porous HA scaffolds and trabecular bone, the 
strength was comparable, with freeze-cast FHA scaffolds sintered at 
1450 ◦C demonstrating the greatest strength of the tested scaffolds 
within the upper range of trabecular bone compressive strength. As the 
strength and porosity are controllable through parameters in the freeze 
casting process, these properties could be optimized to achieve an ideal 
porosity with the strength to be used in load-bearing regions. Increasing 
the porosity would, in turn, reduce the mechanical strength, so 
achieving a balance between cell growth and strength would be some-
thing to pursue. Cells proliferated through all freeze-cast FHA scaffolds, 
with the greatest proliferation occurring in scaffolds sintered at 1450 ◦C. 
Recent studies using FHA in vivo and in vitro show improved biocom-
patibility compared to HA by extending implant fixation and lifespan 
(Rojaee et al., 2014) and limiting osteoclast differentiation to reduce 
bone resorption (Liu et al., 2019). Freeze-cast FHA scaffolds showed 
potential in applications in orthopedic and dental surgeries, however, in 
vivo bone regeneration properties need to be assessed prior to any 
clinical application. 

4. Conclusions 

The mechanical properties, material properties, and biocompati-
bility of freeze-cast FHA scaffolds sintered at 1250 ◦C, 1350 ◦C, and 
1450 ◦C were evaluated. Increasing sintering temperature showed a 
change in the composition and structure of the FHA as well as increasing 
the mechanical properties. The freeze-cast FHA scaffolds showed similar 
pore structure and wall thickness at all sintering temperatures; however, 
wall pores were removed by sintering to 1450 ◦C, indicating fully 

sintered scaffolds. Similar to the mechanical properties in human 
trabecular bone, a compressive strength of 13.5 ± 4.0 MPa and an elastic 
modulus of 379 ± 182 MPa were achieved when sintering at 1450 ◦C. 
After a 1-week incubation in vitro, hOB cells proliferated through all 
porous scaffolds, with the greatest proliferation occurring in scaffolds 
sintered at 1450 ◦C. Human osteoblast cells also migrated into the 
interior of the scaffolds with increasing proliferation and increasing 
sintering temperature. Freeze-cast FHA scaffolds showed potential to be 
used as osteogenic engineered bone-grafts for bone regenerative 
applications. 
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