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Abstract
Freeze casting with bioceramics affords the opportunity to create the next generation of bone graft substitutes. Because of 
its versatile material fabrication process and effective methods of structural control, freeze casting helps to meet the many 
criteria that are required of viable bone graft substitute biomaterials. In combination with biocompatible and resorbable 
ceramics and ceramic composites that can offer bone growth through osteoconduction, this process helps provide a tailored 
pore structure while maintaining the necessary mechanical properties for bone growth. Here, the advantages of freeze casting 
with bioceramics for orthopedic and dental applications are summarized: in particular, these advantages include its compat-
ibility with a large variety of bioceramics, many forms of both uniform and localized structure control, and its ability to be 
used in combination with other advanced manufacturing processes.
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Introduction

Freeze casting to fabricate bone graft substitutes has gar-
nered great interest in the past two decades. This technique 
for the construction of porous structures has many benefits to 
meet the requirements of biomaterials, materials engineered 
to work in tandem with biological systems. When combined 
with ceramic biomaterials, referred to herein as bioceram-
ics, freeze casting could lead to the next generation of bone 
graft substitutes.

In this review, we have detailed how freeze casting has the 
potential to satisfy the many requirements of biomaterials, 
thus making it an excellent technique for fabricating bone 
graft substitutes. In particular, here we will focus on: (1) the 
variety of bioceramics and their composites used with freeze 
casting for the purpose of creating bone graft substitutes and 
(2) the different methods that researchers have used to con-
trol and tailor their porous freeze-cast structures while using 
these bioceramics. Along with its compatible usage with 
all types of materials and its various controls to generate a 
tailored pore structure, freeze casting offers possibilities in 

composite fabrication and unique structures when combined 
with other advanced manufacturing processes.

Summaries of freeze casting with biomaterials provided 
by Deville et al. [1] and Wegst et al. [2] have focused on the 
physics and principles involved in the freeze-casting process 
and offer insights into how the process can differ through 
alterations to the initial conditions. Nelson and Naleway [3] 
have described intrinsic and extrinsic control methods that 
can be used during the freezing process. Bioinspired freeze-
cast structures and new applications and materials for freeze 
casting have been reviewed recently, with foci on broader 
applications such as energy storage or structural applica-
tions [4, 5]. A review on freeze casting with biopolymers 
for biological tissue engineering has also been discussed 
by Qin et al. [6]. In deference of these topics, this review 
instead emphasizes how the specific advantages of freeze 
casting through material use and structural control can be 
implemented to create bioceramics for orthopedic and dental 
applications.

Biomaterial Requirements

Bone grafts and bone graft substitutes accounted for the 
largest share of the biosurgery global market in 2020, with 
increased usage in orthopedic and dental surgeries [7]. An 
estimated 2.2 million orthopedic bone graft procedures 
are performed each year, with 500,000 estimated to occur 
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in the United States, a trend that is likely to increase as 
the geriatric population increases [8–11]. Additionally, 
cosmetic improvements such as oral and cranio-/maxillo-
facial surgeries are on the rise, with another estimated 
500,000 cosmetic dental implant procedures occurring in 
the US in 2019 [12]. Sports injuries and bone deformities 
in pediatric patients have also led to increased usage of 
orthopedic and dental implants [13, 14]. With the expected 
global increase in procedures, there persists a demand for 
the development of better, marketable bone graft substi-
tutes [7, 11, 12, 14].

With the main goal to regrow and provide support to the 
surrounding bone tissue, multiple interconnected criteria 
define a viable bone graft substitute biomaterial based on 
both the material composition and structural properties of 
the scaffold [15–17]:

1. The biomaterial must be biocompatible (Fig. 1a), mean-
ing it will provide an environment that meets the nutri-
tional and biological needs for bone cells to grow [18]. 
The biomaterial should also aim to limit cytotoxicity, 
immunogenicity, or other negative responses (Fig. 1b) 
as dictated by standards such as ISO 10993-1, Biological 
Evaluation of Medical Devices [19].

2. The biomaterial should promote bone growth and bio-
logical performance through osteoconduction, osteoin-
duction, and osteogenesis (Fig. 1c). Osteoconduction is 
the ability to spread osteoblasts cells along a surface 
through cell adhesion, proliferation, and migration 
[20]. Osteoinduction, or the signaling of osteogenesis 
typically through growth factors, is the ability to sig-
nal, recruit, and differentiate stem cells and osteoblasts 
through bone healing protocols at a repair site [21–23]. 
Osteogenic biomaterials should contain the cells, growth 
factors, and the appropriate pore structure required to 
grow new bone [24].

3. The biomaterial must have appropriate mechani-
cal strength that matches that of the implant location, 
properly distributing the load to the surrounding bone 
(Fig. 1d). The exact required properties need to vary 
with the targeted application. Mismatched mechanical 
properties (Fig. 1e) can lead to implant loosening, fail-
ure, and fracture [8, 25, 26]. Trabecular or cancellous 
bone has a measured ultimate compressive strength 
of 2–20 MPa and an elastic modulus ranging from 0.1 
to 5 MPa [27]. Cortical or compact bone has greater 
strength at 100–230 MPa [28] and elastic modulus from 
7 to 30 GPa [29]. Additional mechanical properties 
that should be considered include hardness and fatigue 
life [28]. Bone also exhibits orthotropic structural and 
mechanical properties, so matching the mechanical 
properties relies on both the material composition and 
pore structure [10].

4. The biomaterial must have adequate porosity to allow for 
vascularization, cell proliferation and migration, nutri-
ent transportation, and waste removal (Fig. 1f, g) [8, 
10, 30]. Bone is naturally a porous material, so a viable 
biomaterial should mimic that. Unfortunately, a porous 
structure negatively affects mechanical strength, lead-
ing to the need to compromise between porosity and 
strength [1, 31]. Studies on bone substitutes have found 
the ideal pore size should be greater than 100 μm to 
allow for new bone formation, with smaller pores lead-
ing to less observed bone growth [32]. Pores greater than 
300 μm were reported to produce the most vasculariza-
tion and new bone formation [15]. A total porosity of at 
least 60% and the addition of microporosity in structural 
walls have also been reported to improve bone growth 
[33–35].

5. The biomaterial must have a controllable resorption 
rate [36–39] and safe biodegradability (Fig. 1h) [40]. 
Resorption is a step in the process of bone remodeling 
where the mineral phase is broken down and returned to 
the body. In the human body, all of the bone is resorbed 
and remodeled within a period of about six-to-seven 
months [41]. Given this time constraint, a biomaterial 
that degrades too quickly will outpace the bone’s remod-
eling, leaving a weakened pore structure. In addition, 
biodegradable products must not create toxic byproducts 
lest they harm the body [15]. In the event of a bioinert 
material that cannot be degraded (Fig. 1i), any particu-
lates that accumulate from frictional wear must be non-
cytotoxic both locally and systemically [42].

With so many requirements, many biomaterials tend to 
meet only a couple of the requirements instead of all of them 
(e.g., metal hip stems that provide high mechanical strength, 
but never resorb and are not osteogenic [43]), thus resulting 
in suboptimal products and negative patient outcomes like 
secondary surgeries [30, 44] and material failures [10, 45].

As shown in Table 1, current solutions for bone graft 
substitute biomaterials are as follows: (1) autografts, which 
are harvested from other areas of the patient’s own body; 
(2) allografts, which are sourced and processed from human 
donors; (3) xenografts, which are sourced from donors of 
other species (e.g., from bovine bone); and (4) alloplasts 
(e.g., as is the focus of this review, ceramic alloplasts or 
bioceramics), which are artificially synthesized. Autografts 
remain the gold standard for bone graft substitutes for their 
biological safety with little risk of immunogenicity, and they 
naturally possess the cells and the vascularized pore struc-
ture required for osteoconduction, osteoinduction, and oste-
ogenesis [10]. However, complications can arise from the 
multiple necessary surgeries leading to pain and higher costs 
[15, 46]. Consequently, autografts are limited to smaller 
bone defects. Allografts sourced from human donors, living 
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Fig. 1  Illustrated requirements of biomaterials. a (left half, pink) An 
implant with biocompatible material and structure that allows for 
proper bone growth and provides an environment to support bone 
healing. b (right half, orange) A hazardous implant that is cytotoxic 
and immunogenic causing cell necrosis, phagocytosis of implant par-
ticulates, and fibrous encapsulation. c An osteoconductive and oste-
oinductive biomaterial that allows for proliferation and migration of 
osteoblast cells as well as the recruitment of stem cells for osteogen-
esis. d (left, pink) A biomaterial with matching mechanical proper-
ties that distributes the load to surrounding bone. e Biomaterials with 
mismatched mechanical properties, (left half, orange) a material that 

is too strong or stiff and does not transfer enough load to surrounding 
bone, (right half, orange) a material that is too weak and experiences 
cracking and implant failure under loading. f (left half, pink) A bio-
material with matching porosity and pore size leading to cell migra-
tion into the pores and angiogenesis. g (right half, orange) Inadequate 
porosity and pore size leading to limited cell growth. h (left half, 
pink) A resorbable and biodegradable biomaterial leading to eventual 
replacement from bone growth. i (right half, orange) A biomaterial 
with low resorption and potentially harmful degradation products 
ultimately leading to fibrous encapsulation
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or deceased, are the primary alternative to autografts [10, 
15]. However, these materials require sterilization to pre-
vent potential disease transmission, which can reduce the 
effectiveness of the material in terms of mechanical strength 
and osteoinduction [47]. Similarly, xenografts obtained from 
porcine [48], bovine [49], coral [50], and other [51] nonhu-
man sources also require sterilization to prevent potential 
interspecies disease transmission like bovine spongiform 
encephalopathy or porcine endogenous retroviruses.

In addition to the market prospects and biomaterial 
requirements, patient concerns with the source of the prod-
uct material should also be considered [52, 53]. Patient sur-
vey studies on the preferences of bone graft materials found 
the highest refusal rates for allografts, extraoral autografts, 
and xenografts [54, 55]. Some of the reasons for refusal 
include religious and ethical motivations for allografts and 
xenografts, and fear of pain for autografts [54]. On the other 
hand, alloplasts showed the lowest refusal rates along with 
intraoral autografts [54, 55]. Therefore, there exists the 
need for products that can achieve the desired bone growth 
properties while also meeting clinical demands, leading to 
a plethora of research into suitable alloplastic biomaterials.

Promising research on synthetic alloplasts has produced 
many constructs from the different classes of materials: met-
als, ceramics, polymers, and composites [15, 24, 46]. The 
appeal of these biomaterials lies in their multitudinous man-
ufacturing processes, limitless combinations, and adaptabil-
ity toward the desired applications. Because these materials 

are synthetically made, they have an edge over autografts 
which require extra surgeries and also over allografts and 
xenografts which have a small risk of disease transmis-
sion. With these advantages, alloplasts with hierarchical 
porous structures, biocompatible and resorbable materials, 
and tailored mechanical properties mimicking bone can be 
fabricated. However, despite their great potential as bone 
graft substitutes, each group of materials faces hurdles that 
must be overcome: metals often remain inert and can intro-
duce cytotoxic particulate from wear or implant loosening 
because they are much stronger than bone, ceramics remain 
brittle which limits their use in load-bearing regions and 
can lead to catastrophic failure, polymers degrade rapidly 
and lack mechanical strength, and composites often require 
complex, expensive manufacturing processes [15, 24, 42, 
46]. Additionally, many materials lack osteoinductive capa-
bilities, thus, further research into osteoinduction through 
growth factors or other methods is necessary to match the 
osteogenic potential of autografts. Furthermore, matching 
the anisotropic structure and mechanical properties of bone 
still remains a challenge [15, 24, 42, 46].

Freeze‑Casting Principle

Several methods have been used to fabricate porous bioma-
terials for bone graft substitutes. Examples include polymer 
replication [56, 57], solid freeform fabrication [58], and 
rapid prototyping [59, 60], to name a few. These methods 

Table 1  Types of commonly used bone graft substitutes

Type Material source Advantages Disadvantages

Autografts Patient:
Extraoral/intraoral bone

•Osteoconductive
•Osteoinductive
•Osteogenesis
•Matching structural strength
•Matching resorption
•No immunogenicity

•Reliance on patient tissue quality and avail-
ability

•Pain
•Infection

Allografts Human donors:
Freeze-dried bone allografts
Demineralized bone matrix

•Cadaveric sourcing
•No harvest surgery
•Osteoconductive
•Matching structural strength
•Matching resorption

•Necessary sterilization
•Limited osteoinduction
•Reduced properties from sterilization
•Low risk of disease transmission
•Patient ethical/religious concerns of source

Xenografts Animal donors:
porcine/bovine/coral

•Economical sourcing
•No harvest surgery
•Osteoconductive
•Matching resorption

•Necessary sterilization
•No osteoinduction
•Reduced properties from sterilization
•Low risk of disease transmission
•Patient ethical/religious concerns of source

Ceramic alloplasts Artificial constructs:
HA, β-TCP, BG,  Al2O3,  TiO2,  ZrO2, 

etc.

•Synthetic sourcing
•No harvest surgery
•Osteoconductive
•Tailorable structures and materi-

als
•Similarity to bone mineral
•Resorbable
•No disease transmission

•Necessary sterilization
•Limited osteoinduction
•Needs optimization to match bone proper-

ties
•Brittle
•Difficulty controlling resorption
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typically provide an isotropic microstructure. To produce 
anisotropy closer to that of natural bone, alternative methods 
should be employed. One particularly promising technique 
is freeze casting [1, 61].

Freeze casting offers many advantages for manufacturing 
biomaterials because of its relatively simple physical process 
that remains mostly independent of the solid material [1, 
5]. While freeze casting has been achieved with a variety 
of solid materials (e.g., polymers, metals, and composites), 
it has primarily been used with ceramics [1, 2, 61, 62]. As 
such, the discussion herein will concentrate on freeze casting 
with bioceramics, specifically focused on endeavors to create 
bone graft substitutes mimicking natural bone.

Ceramic freeze casting involves four main steps 
(Fig. 2a–d):

1. Mixing of a solvent with ceramic particles to form a 
colloidal slurry,

2. The freezing of the colloidal slurry at a controlled rate,
3. Sublimation of the solvent under low temperature and 

pressure to form a green body, and
4. Sintering of the green body to consolidate the structure 

and increase mechanical strength.

Unidirectional freeze casting using a single freezing 
direction is the most common form of freeze casting. 
The freeze-casting process results in a porous scaffold 
where the pore structure is the negative of the frozen sol-
vent. Additional post-processing can be performed with 
examples including infiltrating (Fig. 2e) or surface coat-
ing (Fig. 2f) the porous scaffold with another material to 

Fig. 2:  4-step unidirectional 
freeze-casting process shown 
on a pressure–temperature 
diagram. a Mixing of a colloidal 
slurry. b Freezing of the slurry 
with a vertical freezing direc-
tion (FD). c Freeze drying, sub-
limation, at low temperature and 
pressure to remove the solvent. 
d Sintering at high temperature 
to densify structure. e Post-
processing through infiltration 
of structure. f Post-processing 
through coating of the pore 
surfaces
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produce a composite or altering the surface properties of 
the scaffold to better match the surface of bone.

To elaborate on the nuances of the process, the initial 
colloidal slurry requires proper dispersion of the ceramic 
particles. If sedimentation occurs, no porosity will appear, 
therefore, a dispersant is added to maintain colloidal homo-
geneity. As the solvent freezes, often through contact with 
a freezing element or cold finger, the ceramic particles are 
pushed aside by the solidifying solvent [2, 61, 62]. This 
freezing front traps the ceramic particles between the solvent 
crystals. If the freezing process occurs too quickly, then the 
ceramic particles will be absorbed into the freezing front, 
producing a homogenous, monolithic structure [63]. To 
maintain structural stability during sublimation, polymeric 
binders are added to the initial colloidal slurry. These bind-
ers are generally removed during sintering through pyrolysis 
[3, 61].

The properties of freeze-cast scaffolds can be controlled 
through various parameters during the freezing process. 
These parameters are often used to control the pore structure 
and properties, but can also affect the mechanical properties 
[3], as demonstrated when comparing the inverse relation-
ship between porosity and mechanical strength [1]. These 
parameters can generally be categorized into intrinsic and 
extrinsic control methods [3]. Intrinsic controls, which are 
defined as those that act within the freezing process [3], 
include changes to the particle quantity and size [64–66], 
changes to the particle shape [5, 67–69], solvent choice [70], 
the presence and types of additives [71–73], and changes 
to the freezing rate [74, 75]. Intrinsic control methods can 
affect the global microstructure and porosity but tend to 
act uniformly, thus lacking the influence to enact localized 
alterations in the pore structure. Extrinsic controls, which 
are defined as those that act upon the freezing process 
through external influences [3], include the use of sacrificial 
templates [76–78], changes in the freezing direction [79], 
multi-step freezing [80], and the use of applied energized 
fields such as magnetic [67, 81, 82], electric [83–85], and 
ultrasonic fields [86–88]. Extrinsic control methods allow 
for more complex pore structures to be made, with hierarchi-
cal and localized anisotropy that can differ across multiple 
length scales and locations.

Tanaka et al. [34] offers a great example of the benefits 
that freeze casting offers for creating bone graft substitutes. 
In this work, they evaluated the properties of scaffolds that 
had aligned pores through freeze casting or randomly ori-
ented, interconnected pores through another method. The 
freeze-cast scaffolds allowed for better in vitro cell prolif-
eration in the scaffold interior. They continued their study 
in vivo using mice and observed greater bone regenera-
tion within the freeze-cast scaffold compared to the scaf-
fold with randomly oriented, interconnected pores. These 
improvements were deduced as the results of the anisotropic 

structure obtained through freeze casting. The aligned pores 
allowed for a higher compressive strength and porosity in the 
applied directions, improving cell proliferation and load dis-
tribution. Additionally, capillary action was observed during 
cell seeding, providing an easier pathway for cells to travel 
when compared to the tortuous pores in the interconnected 
structure.

To meet the need for suitable bone graft substitutes, 
freeze casting with bioceramics can be used to create porous, 
mechanically sound biomaterials with appropriate biocom-
patibility, bone growth, and timely resorption. Freeze cast-
ing consists of a straightforward, physical process that is 
compatible with all types of materials and offers versatile 
control methods. The technique also offers the means to 
create tailored, anisotropic pore structures with matching 
mechanical strength to promote bone ingrowth and vascular-
ization. In summation, our aim is to emphasize two advan-
tages that freeze casting with bioceramics offers for fabricat-
ing bone graft substitutes: (1) freeze-cast biomaterials can 
be fabricated with numerous types bioceramics and their 
composites, and (2) freeze casting with bioceramics offers 
many control methods to create both uniform and localized 
tailored pore structures as necessitated for orthopedic and 
dental applications.

Freeze Casting with Bioceramics

While freeze casting can be performed with many materials, 
a large number of these materials are inappropriate as bone 
biomaterials or do not fit within the definition of bioceram-
ics. To define what consists of a bioceramic, the authors have 
decided to consider any material that consists of at least 50% 
ceramic by composition, excluding those ceramics not gen-
erally accepted as viable for biological applications. Here, 
we will discuss the most commonly applied bioceramics that 
have been used with freeze casting for bone graft substi-
tute applications with examples of such materials shown in 
Fig. 3.

Calcium Phosphates

As a calcium phosphate (CP), hydroxyapatite (HA) 
 [Ca10(PO4)6(OH)2] (Fig. 3a) is one of the most commonly 
used materials for bone substitutes because of its similar 
chemical composition to the mineral phase in bone [89]. 
HA shows exceptional osteoconductivity [90] with poten-
tial for osteoinductivity [91–93] as well and low solubil-
ity when compared to other calcium phosphates [94, 95]. 
This low solubility leads to slower resorption rates, with 
HA implants only showing full replacement with natural 
bone after more than five years [96, 97]. Many reports detail 
the properties of freeze-cast HA scaffolds. Reported solid 
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loadings using HA have ranged from 5 volume % (vol%) up 
to 45 vol%, with total porosity negatively correlating to the 
solid loading [62]. Sintering procedures often involve heat-
ing the green body up to at least 850 °C. Decomposition into 
α-tricalcium phosphate  [Ca3(PO4)2] and tetracalcium phos-
phate  [Ca4(PO4)2O] are reported to occur above 1250 °C [31, 
98, 99], however, there are reports of successful freeze-cast 
HA scaffolds without decomposition when sintered up to 
1375 °C [100] and 1450 °C [101]. When used with unidi-
rectional freeze casting, compressive strengths have ranged 
from 0.5 to 145 MPa [31, 102]. This wide range can be 
attributed to differences processing parameters. Solid load-
ing often provides the greatest influence, with higher solid 
loadings leading to greater strengths and lower porosities 
[1, 62]. Freeze-cast HA has shown great potential as a bone 
graft substitute. Unidirectional porous HA with pores aver-
aging 300 μm have been studied in vivo with animal mod-
els [103, 104] and clinical cases [96, 105] with success in 
orthopedic applications [106] and Japanese Pharmaceuticals 
and Medical Devices Agency (PMDA) approval for use in 
human cases [107].

Tricalcium phosphate (TCP)  [Ca3(PO4)2] is a biocompat-
ible calcium phosphate similar to HA. TCP is commonly 
used in its β-TCP form and permanently transforms into 
a more soluble α-TCP form when sintered above 1250 °C 
[93, 98]. Both forms of TCP are used in medical and den-
tal applications [108]. One benefit of β-TCP over HA is its 
improved osteoinductivity, with many reports on successful 
osteoinduction through its usage [109]. While also readily 
accepted by the body, TCP resorbs much faster than HA, 
with partial resorption occurring within ten weeks [95, 110] 
and full resorption of a porous β-TCP implant occurring 
within 1–1.5 years leading to potential implant loosening 
[106, 111]. Along with faster resorption, TCP exhibits lower 
mechanical strength, which can limit the material’s use in 
loading applications [110, 112]. When used with unidirec-
tional freeze casting, scaffolds made from β-TCP had com-
pressive strengths ranging from 0.1 to 45 MPa, again often 
determined by the solid loadings which ranged from 2 vol% 
up to 45 vol% [62]. Freeze-cast β-TCP scaffolds have been 
studied and have shown success in vivo with bone growth 
occurring in animal models [111]. They have also been 

Fig. 3  Scanning electron microscopy images for freeze casting with 
various bioceramics. a Hydroxyapatite, HA [31]. b Biphasic calcium 
phosphate, BCP [115]. c Alumina,  Al2O3 [79]. d Bioactive glass, 

13–93 BG [151]. e HA-collagen freeze-cast composite [160]. f  ZrO2 
infiltrated with polymer epoxy [130]. Images adapted with permission
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used in human studies for tibial reconstructions [113] and 
have achieved Japanese PMDA approval [114]. When com-
pared to β-TCP scaffolds with spherically shaped pores, it 
was shown that the unidirectionally aligned pores offered 
by freeze-cast β-TCP scaffolds improved blood flow, cell 
attachment, and resource transportation [113].

Through combining HA and β-TCP, biphasic calcium 
phosphate (BCP) (Fig. 3b) has also been studied with freeze 
casting [115–117]. BCP takes advantage of the stability and 
strength of HA and the improved osteoinductivity and faster 
resorption of β-TCP. Because of its dual composition, BCP 
resorbs with an intermediate rate between its constituents 
but offers greater osteoinduction than HA [89]. Mechanical 
strengths of unidirectional, freeze-cast BCP scaffolds were 
reported from 0.02 to 36.4 MPa [116, 117]. Using a BCP 
composition of 20 weight % (wt%) HA to 80 wt% β-TCP, 
Yang et al. [116] showed suitable cytocompatibility with 
rat mesenchymal stem cells (MSCs), showing promise for 
future freeze-cast BCP research.

Fluoridation through partial and full substitution of the 
hydroxyl group in HA with fluorine can yield fluorohy-
droxyapatite (FHA)  [Ca10(PO4)6(OH)xF1−x] and fluorapa-
tite (FA)  [Ca10(PO4)6F2], respectively [118, 119]. When 
compared to HA, FHA and FA have shown improved cell 
proliferation and differentiation [119, 120]. Fluoridation 
also provides thermal stability, allowing FHA and FA to be 
sintered at much higher temperatures (up to 1450 °C) than 
HA and β-TCP with notably less decomposition [121, 122]. 
Unidirectional, freeze-cast FHA scaffolds with 10 vol.% 
solid loading were reported to have compressive strengths 
ranging from 4.5 to 13.5 MPa depending on sintering tem-
perature [123]. Through in vitro cell culturing, osteoblast 
cell proliferation increased with sintering temperature. 
While no freeze casting with FA has been reported so far, 
FA has become a steadily increasing subject of biomaterials 
research and freeze-cast FA could show promise for bone 
graft substitutes [124, 125].

Bioinert Ceramics

Bioinert ceramics such as alumina  (Al2O3) (Fig. 3c), titania 
 (TiO2), and zirconia  (ZrO2) often exhibit different prop-
erties when compared to CPs such as: greater corrosion 
resistance, greater mechanical strength, and reduced cell 
activity [108, 126, 127]. In the pursuit of porous materials, 
freeze-casting research with these ceramics often focuses 
on other applications such as insulators and energy storage 
[61]. However, there are still reports for their use as bio-
materials [128–131]. Reported freeze-casting compressive 
strengths are 1–25, 1–175, and 4.36–150.6 MPa for  TiO2, 
 Al2O3, and  ZrO2, respectively [62]. These mechanical prop-
erties show potential uses in both load-bearing and unloaded 

regions. However, due to their biological inertness and lack 
of resorption, these materials often require additional pro-
cessing to be suitable for use as bone graft substitutes, lest 
they face fibrous encapsulation [127].

Another factor to consider is the sintering behaviors of 
the materials. For freeze-cast scaffolds with the greatest 
strength,  TiO2 completely transitions from anatase to rutile 
when sintered above 700 °C [132] versus alumina which 
requires sintering from 1500 to 1800 °C [133] and zirconia 
which exhibits the greatest mechanical properties when sin-
tered from 1400 to 1550 °C [134]. While bioinert ceramics 
have been heavily studied and implemented in other tech-
nologies, their use as bone graft substitutes made through 
freeze casting lacks the strong foundation in research when 
compared to CPs.

Ceramic–Ceramic Composites

Given the unique properties of specific materials, there are 
reports of freeze casting with ceramic-ceramic compos-
ites and element doping to improve upon limitations of the 
original constituents. These composites and doping methods 
are similarly used in other fabrication techniques, showing 
potential avenues of study for improved freeze-cast bioce-
ramics [135–137]. When combined with other ceramics 
or doped with metal ions, CPs with improved properties 
have been achieved. One example would be the aforemen-
tioned BCP, using a combination of HA and β-TCP. Using a 
bioinert ceramic, Ghazanfari and Zamanian researched the 
influence of  Al2O3 concentrations on HA, showing greater 
mechanical strength and changes to the pore microstructure 
in freeze-cast HA-Al2O3 scaffolds because of the smaller 
 Al2O3 particle size [138]. When HA was combined with 
barium titanate  (BaTiO3), an electrically active and biocom-
patible ceramic, human osteosarcoma MG-63 cells were bet-
ter able to adhere to, proliferate on, and differentiate on the 
freeze-cast HA-BaTiO3 scaffolds when compared to basic 
freeze-cast HA scaffolds [139]. Nanosized silica (silicon 
dioxide,  SiO2), another biocompatible ceramic, added to 
freeze-cast HA scaffolds during freezing improved MG-63 
cell proliferation and differentiation because the  SiO2 altered 
the surface properties by providing bone nucleation sites 
through silanol (Si–OH) groups; greater thermal stability 
was also observed with less shrinkage occurring from  SiO2 
presence [140]. Freeze-cast scaffolds made with more com-
plex composite ceramics such as hardystonite  (Ca2ZnSi2O7) 
[141] and merwinite  (Ca3Mg(SiO4)2) [142] have also been 
studied for use as biomaterials. By doping CPs with stron-
tium, Sr [143], and magnesium, Mg [144], or  Al2O3 with 
silicon [145], scaffolds with improved mechanical properties 
and bioactivity can be fabricated. Given the decomposition 
of CPs at high temperatures, large concentrations of a mate-
rial that require higher sintering temperatures such as  Al2O3 
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could be detrimental to the desired product. Therefore, com-
patibility between the composite constituents must be con-
sidered to produce a viable bone graft substitute. Sintering 
may also lead to new, less desirable phases from decompo-
sition, so the study of the sintering behavior should also be 
performed when using composites.

As another type of composite material, bioactive glasses 
(BGs) (Fig. 3d) are silicon-based, surface-reactive bioma-
terials with compositions mostly containing silica  (SiO2). 
Depending on the product, they can also contain calcium 
oxide (CaO), sodium oxide  (Na2O), phosphorus pentoxide 
 (P2O5), and additional oxides [32, 146]. Bioactive glass has 
garnered interest for bone repair due to its aptitude for cell 
growth, tissue attachment, and osteogenic potential [32, 
147]. Another distinction of BGs are their antimicrobial 
properties, reducing the risk of biofilm production [148]. 
In vitro testing with freeze-cast scaffolds using BG 13-93 
showed increasing cell proliferation over a period of 7 days, 
with cell activity observable within the depths of the scaf-
folds [149]. Similarly, freeze-cast BG scaffolds were seeded 
and implanted into rat models and were reported to produce 
tissue formation as well as the presence of HA on the surface 
of the scaffold [150]. Long term observations of in vivo ani-
mal models showed a change from brittle to elastic–plastic 
mechanical behavior after 24 weeks, indicating the poten-
tial for freeze-cast BG scaffolds to be used in load-bearing 
regions [151].

Ceramic–Polymer Composites

In addition to ceramic–ceramic composites, freeze casting 
has also been used to fabricate ceramic–polymer composites. 
Both synthetic and natural polymers have been used, such 
as collagen, gelatin, chitosan, polyvinyl alcohol (PVA), and 
poly(methyl methacrylate) (PMMA) [152–155]. One ben-
efit of polymer incorporation includes better compositional 
alignment with natural bone, which itself is a composite 
made from collagen, carbonated HA, water, and additional 
extracellular proteins. Another benefit of polymer incorpo-
ration is the improved cell growth shown in vitro on a CP-
collagen scaffold when compared to only a CP one [156].

There are two main methods of polymer incorporation 
into freeze-cast bioceramics: slurry-based and infiltration-
based. Slurry-based composites (Fig. 3e) incorporate the 
polymer into the initial slurry composition before freezing. 
These composites typically do not go through a sintering 
process to prevent the desired polymer from burning off 
[157]. While the mechanical strength is often less than that 
seen in sintered scaffolds, slurry-based composites often 
exhibit similar mechanical behavior to trabecular bone, 
moving from brittle to ductile failure with the inclusion of 
the polymer phase [158–160]. Yunoki et al. demonstrated 
in vivo tissue ingrowth into an HA-collagen slurry-based 

composite scaffold in an 80–20 wt% composition [160]. 
These composite scaffolds exhibited viscoelastic behavior, 
with shape-recovery occurring after cyclic compression in 
addition to improved mechanical strength along the freez-
ing direction. Furthermore, as mentioned previously with 
Tanaka et al. [34], the anisotropic pore structure provided 
by freeze casting allowed for improved tissue ingrowth when 
compared to randomly oriented, interconnected pores.

The polymer phase also offers the opportunity to improve 
osteoinduction by attaching growth factors much more easily 
or immobilizing them in the polymer phase during freezing. 
Many techniques have been produced that have successfully 
attached growth factors to polymer surfaces or embedded 
them into the polymer [161, 162]. While chemical attach-
ment on CPs and other bioceramics is possible, there still 
remain some obstacles to overcome when compared to poly-
mer functionalization [163]. Accordingly, further research 
into improving osteoinduction in freeze-cast ceramic–poly-
mer scaffolds should be considered.

In contrast with slurry-based composites that add the 
polymer phase during the initial process, infiltration-based 
composites (Fig. 3f) add the polymer phase after the freeze-
cast bioceramics has been sintered and densified. In doing 
so, the mechanical strength of the ceramic is preserved 
because of the sintering step while allowing the addition 
of a polymer or epoxy through infiltration into the pores. 
This infiltration step typically occurs by placing the scaffold 
into a polymer solution. While under vacuum, the material 
is percolated into the ceramic scaffold, either filling up the 
pores or coating the walls. Inversely of note, a slurry-based 
ceramic coating on a freeze-cast polymer scaffold with a 
ceramic composition of up to 45% was demonstrated by Wu 
et al. [164].

These infiltration-based composites offer many benefits, 
greatly improving mechanical strength and mimicking nacre 
or bone with high toughness [76, 112]. During crack forma-
tion in a fully infiltrated composite, the polymer has been 
reported to fill in the crack, thus improving the mechanical 
toughness [112, 165]. While porosity is lost through this 
infiltration, there still remains the potential for use as a bone 
graft substitute for load-bearing applications where dense 
cortical bone is desired [155, 166, 167]. In some cases, with 
proper dehydration to remove the solvent, porosity can be 
maintained with the polymer only coating the walls [112, 
165]. This still allows for the movement of cells and vascu-
larization. In vivo testing in Wistar rat cranial bone showed 
improved osteoblast density on polymer-coated scaffolds 
when compared to uncoated ones [112].

As a whole, freeze casting with bioceramics has heav-
ily focused on HA, β-TCP, and BGs, with growing inter-
est in ceramic–polymer composites, and with more lim-
ited research into bioinert ceramics. Trends toward further 
augmenting these freeze-cast bioceramics have focused on 
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composite fabrication with goals for improving mechanical 
performance, controlling resorption and degradation, and 
providing drug delivery and growth factor capabilities [69, 
162, 168].

Tailored Freeze‑Cast Pore Structures

As a multi-step process, freeze casting offers many forms 
of control. During the freeze-casting process, both intrinsic 
and extrinsic controls can be used. Control of sintering also 
plays a role with improving mechanical properties. Addition-
ally, freeze casting can be combined with other advanced 
manufacturing processes to produce unique pore structures.

Uniform Pore Structure Controls (Intrinsic Controls)

Intrinsic control during the freezing process is typically 
seen while using unidirectional freezing (freezing along a 
single direction, often vertically) to limit the variables to 
control (Fig. 4). This control method affords a uniform pore 
structure. The most common and simplest way to control 
the uniform pore structure is through particle solid loading. 
Increasing solid loading is shown to negatively correlate 
with porosity, with higher solid loadings leading to denser 
materials as demonstrated with a variety of ceramic materi-
als [31, 61, 62]. However, solid loading was shown to have 
no effect on pore size or scaffold wall thickness which can 
be controlled through other means [169, 170]. It is interest-
ing to note that while porosity is negatively correlated to the 
mechanical strength, pore size and the resultant wall thick-
ness are not. Instead, wall thickness was found to predict 
failure by Weibull modulus, with a higher probability of 
failure occurring within thick-walled pore structures because 
there were more regions for catastrophic failures [169]. 
However, because pore size and porosity are important for 
bone ingrowth, efforts should still be taken to ensure an 
appropriate pore structure without compromising mechani-
cal strength.

Another method to modify the pore size is to adjust the 
slurry composition based on solvents (Fig. 4a) and addi-
tives. While water is the most common solvent because of 
its ease of access and biocompatibility, alternatives such 
as camphene [75] and tertiary-butyl alcohol (TBA) [101] 
have been used to provide different pore structures. The pore 
structure provided through freezing water is typically lamel-
lar, with an initially dense region close to the initial freezing 
region [31]. Camphene  (C10H16), cyclohexane  (C6H12), and 
1,4-dioxane  (C4H8O2) are aromatic ring-based solvents that 
freeze above room temperature and can produce dendritic 
pores with greater branching occurring for a more complex 
pore structure [62, 171]. Honeycomb-shaped pores can be 
produced through freezing TBA  (C4H10O) and 1,4-dioxane 

[62, 70, 172]. While pores made through freeze casting are 
often below 100 µm [62], there have been notable successes 
in creating pores suitable for bone growth when using water, 
camphene, or 1,4-dioxane with pores ranging from 100 to 
300 μm [35, 62, 173].

In efforts to increase pore size and potentially improve 
mechanical strength, an annealing process of the solvents 
after they have been fully solidified has shown success [75, 
174, 175]. This annealing process is reported to increase 
pore size and improve pore uniformity by coarsening den-
dritic structures, which is especially apparent when using a 
non-aqueous solvent like camphene that generates highly 
dendritic pores [75]. Understandably, this annealing pro-
cess proves useful in providing a controllable pore struc-
ture as needed for bone graft substitutes and could develop 
into a useful step in the freezing process for freeze-cast 
bioceramics.

In efforts to mimic bone’s various porous structures, a 
variety of additives have been studied for their effect on pore 
structure (Fig. 4b). Hydrogen peroxide and other evaporative 
chemicals have been used to produce spherical pores [176]. 
Alcohols are commonly used to induce larger pores as seen 
with isopropyl alcohol and ethanol [71, 177, 178]. Other 
materials like glycerol [126, 173], gelatin [69, 179], chitosan 
[179], and salts like sodium chloride [115] have been used 
to modify pore structures and sizes as well. These additives 
work by affecting the freezing kinetics through alterations 
to the freezing front and ice crystallization [1]. Mechanical 
properties can be changed too through pore structure altera-
tions based on solvent choice. Fu et al. [100] compared how 
additions of glycerol and 1,4-dioxane to water could alter 
mechanical responses when using a 20 vol.% HA solid load-
ing. Glycerol increased dendritic bridging while dioxane led 
to larger and more cellular pores, and the mechanical per-
formance was shown to improve with greater strengths and 
strains to failure closer to those of bone. As most of these 
freeze-casting additives are polymeric, they are burned off 
during sintering, and so they are expected to have little effect 
on the freeze-cast scaffolds’ performance and biocompatibil-
ity. However, metal-doping or ceramic additives mentioned 
previously for composites do remain, and thus can affect 
scaffold performance. On the other hand where the scaffold 
is not sintered, the polymer additives could also be used as 
a part of the biomaterial in addition to its role in affecting 
freezing kinetics.

Another method to control the pore structure depends 
on the freeze front velocity (Fig. 4c), or the velocity at 
which the solid–liquid interface of the solvent moves. 
There exist two methods to control this velocity: the first 
uses a constant substrate freezing temperature while the 
second uses a constant freezing rate. In both cases, reduc-
ing the freeze front velocity has led to larger pore sizes 
and thicker walls [61, 70, 180]. While freeze front velocity 
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can control pore size and pore geometry based on the sol-
vent, it holds little effect on the porosity, which is mainly 
influenced by solid loading [169]. With the ability to prop-
erly control the pore structure through intrinsic means, 
freeze casting has been proven to produce the pore sizes 

necessary for proper cell proliferation [181]. This control 
over pore size, pore morphology, and porosity have been 
shown with a combination of multiple material, solvent, 
and additive combinations [62].

Fig. 4  Microscopy images for intrinsic control methods for uniform 
pore structures in freeze-cast bioceramics. All images show the struc-
ture perpendicular to the freezing direction. a Solvents: (left to right) 
Water with HA-SiO2 to produce lamellar pores [140], camphene with 
BG glass to produce columnar pores [75], TBA with HA to produce 
honeycomb pores [101]. b Additives: (left to right) 20 wt% glycerol 

to HA in water [70], 1.5 wt% gelatin and 0.7 wt% chitosan to BPC in 
0.5 M acetic acid [179]. c Freeze front velocity: decreasing freezing 
velocity through a warmer substrate temperature of HA in camphene 
to control pore size [180]. d Sintering: increasing sintering tempera-
ture for FHA to densify structure and improve mechanical strength 
[123]. Images adapted with permission
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In addition to freezing parameters as uniform pore struc-
ture controls, sintering parameters can also be used. Sinter-
ing parameters mostly influence mechanical behavior with 
a more limited effect on the pore structure (Fig. 4d). While 
the many variables of the sintering profile can possibly influ-
ence the freeze-cast scaffold, the most common parameters 
that are studied are the dwell temperature and dwell time 
[100, 123, 182]. Freeze-cast scaffolds that have been sin-
tered at higher temperatures or for longer time periods often 
demonstrated much greater mechanical properties with only 
slightly lower porosities [100, 123, 182]. Sintering of freeze-
cast scaffolds can also affect the densification and surface 
characteristics of the material, with micropores appearing 
within walls at lower sintering temperatures [1, 123] While 
there is much research on how sintering of freeze-cast bioce-
ramics affects mechanical properties [62, 100], and research 
on how sintering of other bone replacements impacts in vitro 
bone growth has been done before [183–185], there is lim-
ited research on the biological impact of sintering behav-
iors for freeze-cast bioceramics [123]. Because sintering has 
been found to affect surface characteristics of porous scaf-
folds, which in turn affect bone growth [186], understanding 
and improving sintering procedures provides an avenue of 
study for freeze-cast bioceramics.

Exemplary detailed reports on these different uniform 
pore structure controls can be found in Fu et al. [70, 100] 
with their research focused on microstructure control and 
mechanical behavior. In their research on HA, Fu et al. 
explored various slurry compositions by adjusting solid 
loadings, introducing additives, and using different solvents. 
Additionally, they explored the effects of freeze front veloc-
ity and sintering temperatures. When examining mechanical 
behavior, they found that the freeze-cast HA exhibited high 
strain tolerance, high strain to failure, and high strain rate 
sensitivity [100]. In their works, Fu et al. have shown how 
uniform pore structure controls can be used to achieve the 
desired properties for a bone graft substitute.

Localized Pore Structure Control (Extrinsic Controls)

Extrinsic control methods (Fig. 5) allow for the differentia-
tion of localized pore structures and control over the shape 
of the biomaterial. Unidirectional freeze casting (Fig. 5a) 
with one temperature gradient often acts as the basis for 
more developed methods. One method to achieve this 
localized control is through templating or controlling the 
freezing parameters through physical means. While most 
freeze casting is performed with cylindrical molds, it can 
be used with a much wider range of geometries. By using 
a template or mold, a desired shape can be used to fit the 
needs of the application such as for a tibial wedge [113, 
187]. Templating to control ice growth can also be achieved 
through the introduction of temperature gradients. Bai et al. 

[76] demonstrated the use of bidirectional freeze casting by 
using a polydimethylsiloxane (PDMS) wedge to generate a 
highly aligned pore structure (Fig. 5b). The PDMS wedge 
introduced a second temperature gradient perpendicular to 
the first, leading to more aligned ice nucleation sites and 
hence aligned pores as seen in the electron microscopy 
image in Fig. 5b. This aligned pore structure could be use-
ful in mimicking the orthotropic properties of bone. These 
scaffolds also resembled nacre when infiltrating the HA with 
an epoxy, producing a tough, lightweight, brick-and-mortar 
structure [155].

Shown in Fig. 5c, freeze-cast scaffolds with hierarchical 
structures through localized macropores can be generated 
by using a sacrificial template [77, 78]. Through additive 
manufacturing, a polymer or graphene oxide template with 
struts larger than 100 µm can be placed into a freeze-cast 
slurry, where the freeze-cast pore structure will then be 
built around this template. As the green body is sintered, 
the polymer template will burn off, leaving a pore structure 
with micropores from freeze casting and macropores from 
the sacrificial template, a structure that would be difficult 
to achieve through other means. Similarly, Huang et al. 
[188] used reusable fibers that could be removed to create 
macropore channels, leading to a pore structure templated 
through ice and aligned fibers. While the mechanical perfor-
mance of sacrificial template freeze-cast HA scaffolds was 
affected by the macropore size [77] or number of macropo-
res [188], solid loading was still found to positively cor-
relate with mechanical strength [78]. In vitro study found 
MG-63 cells proliferated well along the scaffolds, showing 
the potential of macro–micro porous freeze-cast scaffolds for 
bone growth through sacrificial templating [77].

Core–shell freeze casting (Fig. 5d) can be performed 
in multiple sequences to produce graded pore structures, 
similar to that of natural bone. These scaffolds are often 
fabricated using a smaller mold to create a porous core and 
this product is placed in a larger mold where the shell is 
then fabricated through freeze casting of a slurry with higher 
solid loading to create the dense shell [80, 171, 189]. The 
inverse can also be fabricated with a dense core and highly 
porous shell, which could prove useful in specific cases 
[171]. By mimicking the porous trabecular bone and dense 
cortical bone, maximum compressive strengths using HA 
were reported by Tang et al. and Lee et al. to be 22.2 MPa 
up to 47, respectively [80, 171]. When compared to regu-
lar unidirectional freeze-cast HA, the core–shell freeze-cast 
scaffolds maintained higher compressive strengths at similar 
porosities (i.e., solid loadings) [80]. Lee et al. attributed this 
improvement to the increase in buckling resistance provided 
by the denser shell. By increasing the ratio of the dense to 
porous area, mechanical strength in core–shell freeze-cast 
HA scaffolds was also found to range from 20 to 50 MPa 
[171]. This core–shell structure allowed for less total 
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Fig. 5  Illustrations (middle) and microscopy images (right) for 
extrinsic control methods for localized pore structures in freeze-cast 
bioceramics. Cross sections are perpendicular to the freezing direc-
tion (blue arrows). a Unidirectional freeze casting to produce a typi-
cal pore structure [77]. The metal cold finger (orange plate) leads to a 
vertical temperature gradient through the slurry (white ellipse) which 
is encased in an insulated mold (gray tube). b Bidirectional freeze 
casting with HA to produce a directionally aligned pore structure 
[155]. A horizontal temperature gradient is added through a polymer 
wedge (yellow wedge). c Sacrificial template freeze casting with HA 
to produce a hierarchical pore structure [77]. Note the template is 

removed during the sintering step. d Core–shell freeze casting with 
HA to produce a core–shell pore structure [80]. Inset on microscopy 
image (upper right) shows a close-up of the interfacial pore structure 
from dense to porous regions from left to right. e Radial freeze cast-
ing with  Al2O3 to produce a centrosymmetric pore structure [190]. A 
metal mold (orange tube) creates a temperature gradient inward, lead-
ing to a radial temperature gradient. f Electric field-assisted freeze 
casting with  Al2O3 to produce directionally aligned pore structures 
[79]. In this orientation, the electric field is applied parallel to the 
freezing direction. Images adapted with permission
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material to be used while achieving improved mechanical 
performance. In addition to improved mechanical proper-
ties, Lee et al. observed that these core–shell scaffolds also 
exhibited greater in vitro preosteoblast cell activity when 
compared to a β-TCP control [171]. However, as cortical 
bone requires much higher compressive strengths than 
those reported, this freeze-cast structure still has room for 
improvement before it can be used in load-bearing regions.

By changing the freezing direction, specific pore con-
figurations can be fabricated. Radial symmetry through 
radial freeze casting (Fig. 5e) has been achieved with  Al2O3 
[189–191] and HA [192] by using a thermally conductive 
mold, allowing ice crystals to nucleate along the cylindrical 
perimeter and freezing inwards. In a similar process, hol-
low, yttria-stabilized  ZrO2 tubes were produced by rotating 
a chilled copper tube filled with slurry, producing a pore 
structure with a macroscopic hole in the center while the 
porous structure contained micropores from freeze casting 
[193]. Radial freeze casting has also been shown to produce 
a graded pore structure with pores up to 200 μm, with a 
dense outer layer leading into a porous center, resembling 
the graded pore structure of bone [117, 192]. Going a step 
further, Su et al. [189] reported on the mechanical behavior 
of radial freeze casting of alumina combined with multi-
ple freezing steps, leading to a dubbed “radial-concentric” 
freeze casting, mimicking the lamellar structure of cortical 
bone and other natural biological structures. When seeded 
with rat bone marrow MSCs in vitro, radial freeze-cast scaf-
folds were shown to produce a capillary flow because of 
the graded pore structure, mimicking the capillary action 
of bone [192]. While it is difficult to find radial symmetry 
in bone, the presence of biomimetic capillary action to aid 
cell growth [192] and mechanical properties comparable to 
trabecular bone [117] improves the viability of radial freeze-
cast bioceramic scaffolds and could provide inspiration for 
other control methods.

While freeze casting with applied energetic fields such as 
ultrasonic [194], magnetic [82], and electric [79] fields have 
seen considerable research in thermal and energy applica-
tions, their study for use in biomaterials has been limited. 
Currently, only HA has been tested with electric field-assisted 
freeze casting for biomaterial applications, which produced 
different pore geometries with improved cell activity in vitro 
compared to scaffolds without an applied electric field [83]. 
However, reports on employing an electric field to  Al2O3 dur-
ing freeze casting (Fig. 5f) showed that duration and strength 
of the electric field could induce a graded pore structure, 
increase dendritic bridging, and increase mechanical strength 
up to 118.7 MPa compared to control samples at 26.6 MPa 
[79, 85]. Given the higher mechanical strength requirements 
of cortical bone, combining electric field-assisted freeze cast-
ing with  Al2O3 may offer a solution for load-bearing regions 
using freeze-cast biomaterials. While there is a report on using 

magnetic fields to control iron (II, III) oxide  (Fe3O4) added 
to HA,  Al2O3,  ZrO2, and  TiO2, the magnetic field had little 
influence on the bioceramics, instead the magnetic field caused 
distinct phase separation of the materials and  Fe3O4 [195]. As 
some bioinert ceramics such as  TiO2 are paramagnetic, apply-
ing strong magnetic fields to produce aligned pore structures 
could eventually prove useful in creating freeze-cast biomateri-
als [67, 81]. Similarly, layered pore structures created through 
ultrasound freeze casting could mimic the laminar arrange-
ment of osteons in bone [88]. Consequently, applied energetic 
fields offer conceivable benefits for freeze-cast bioceramics.

Combined Freeze‑Casting Fabrication

In addition to these control methods, there has recently been 
valuable research into fabrication processes that combine 
freeze casting with other advanced manufacturing processes 
for use as bone graft substitutes. Additive manufacturing with 
freeze casting has shown great potential, with the ability to cre-
ate a tailored macrostructure while still maintaining the micr-
oporosity and mechanical strength required for bone growth. 
HA [196, 197],  SiO2 [197], and akermanite  (Ca2MgSi2O7) 
[198], all biocompatible materials, have been 3D-printed while 
in a slurry state before being frozen to produce a hierarchical 
porous structure. Similarly, a photocurable slurry containing 
CP was produced using camphene–camphor as the solvent, 
allowing for a digital light processing technique [199]. In these 
applications, freeze casting was used to produce micropores 
within the walls, while macropores could be produced through 
the additive manufacturing.

In a similar process to additive manufacturing, thin lami-
nar layers of  Al2O3 slurry were frozen to provide uniquely 
shaped layered structures [200]. This cold slurry-based 
laminar object manufacturing could achieve 20° overhangs, 
showing the potential for use in fabricating bone graft sub-
stitutes to meet specific defect sites [200]. Additionally, 
two-dimensional shapes could be laser cut from the object, 
showing prospects in shaping a bone graft substitute to fit 
the treatment site.

While not using a laser to cut, Parandoush et al. produced 
a core–shell pore structure through freeze casting of HA fol-
lowed by surface laser processing of the outer surface [201]. 
The laser processing provided a dense shell layer similar to 
cortical bone. Further testing should be done to determine 
the effect that this modification would have on mechanical 
properties. In brief, these reports of successful combinations 
of freeze casting and advanced manufacturing processes 
highlight the flexibility that freeze casting can provide for 
biomaterials.
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Conclusions and Future Prospects

In summary, research on freeze casting with bioceramics 
demonstrates substantial evidence toward the advancement 
of alloplastic bone graft substitutes. The major advantages 
of this technique are its versatility for material fabrication 
and many methods of structural control. Freeze casting has 
shown flexibility in working with a variety of biocompat-
ible ceramic and ceramic composite materials with suc-
cess in vitro and in vivo [106]. This technique’s affinity 
with bioceramics means bone growth and osteoconduction 
are also achievable. Additionally, freeze-cast bioceramics 
have been fabricated with mechanical strengths suitable 
for both unloaded and load-bearing regions [113]. This 
mechanical strength is also attainable despite the need for 
a porous structure, for which pores larger than 100 μm 
can be achieved with freeze casting. The essential porous 
structure can also be tailored to meet the orthotropic 
nature of bone through both uniform and localized control 
methods. Finally, the use of CPs can ensure a resorbable 
and biodegradable bone graft substitute. As such, freeze-
cast bioceramics are highly suitable as potential bone graft 
substitutes.

Given the volume of research on freeze-cast bioceramics, 
it can be expected there will be continued interest in this 
avenue for biomaterial fabrication. One aspect to consider 
is the necessity of vascularization of a bone graft substitute, 
which has not been easily demonstrated or reported yet in a 
freeze-cast bioceramic. Similarly, research on osteoinduc-
tion, an imperative process in bone growth, in freeze-cast 
bioceramics is still lacking. Methods to provide vasculariza-
tion and osteoinduction would prove fruitful in improving 
freeze casting for bone graft substitutes. Further study is 
needed as well to better understand and control how freeze-
cast bioceramics are resorbed and how biodegradation pro-
gresses. Controlling the related properties of pore structure 
and mechanical strength still remains a challenge for freeze 
casting; however, the success of in vivo models provides an 
optimistic outlook for these bioceramics. Further research 
into composite materials is also aiding in the implementation 
of better matching the mechanical properties of bone. Lastly, 
as the role of growth factors, drug delivery, and other benefi-
cial compounds on osteogenesis becomes better understood, 
their incorporation into freeze-cast bioceramics provides a 
promising opportunity for improvement.
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